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I.  INTRODUCTION AND PRELIMINARIES 

This report is intended as the first of a series in which the problem 
of heat transfer at a solid boundary will be mathematically investigated 
with the ultimate objective of developing accurate and efficient numeri- 
cal algorithms to solve the appropriate governing equations. The basic 
line of attack will be to use the tools of asymptotic analysis to obtain 
approximate solutions for equations in the form 

ut = a(x) uxx + bW + C(X) u (1.1) 

valid for small times (in a non-dimensionalized sense to be made more 
precise).  In particular these will be obtained through the use of a 
"Diffusion Equation Solution Sequence" or DESS, a concept which was 
introduced in1. The approximate solutions will then be incorporated 
into a numerical scheme which advances over longer time intervals by 
repeating the basic short-time algorithm as frequently as necessary. 
A number of problems of engineering concern can be treated using this 
technique. The problem of particular importance is that of heat transfer 
in gun barrels. More generally any "transport" equation such as discussed 
in2 can be treated in similar fashion. 

In the present report we shall not accomplish these longer term 
objectives but merely wish to lay the foundations by defining and investi- 
gating the properties of certain special functions to be denoted 
H
Y(
x>t), H*(x,t) and v (x,t). These solve the diffusion equation and 

satisfy certain special initial conditions.  In Section VI we shall show 
how these functions can be effectively utilized for obtaining asymptotic 
expansions for solutions of initial-boundary value problems for the 
diffusion equation, valid for small times. 

The number of independent variables in diffusion problems can frequent- 
ly be reduced from two to one by considering the similarity parameter 

-1/2 
xt   , t>0o This is true in the present analysis and we have found it 
convenient not to introduce the functions H* H and v directly but 

Y  Y    n 

first to consider the related functions H , H* and v depending only 

-1/2 on a single variable z (which may be taken as x t ' ).  The first two 
functions are generalizations of the well known repeated integrals of 
the error function and the last is a related polynomial. 

V. F.  Polkj   "Asymptotic Expansions for the Solutions of Parabolic 
Differential Equations with a small parameter'^  Ph.D.  dissertationj 
Department of Mathematics,   University of Delaware3  Newark,  DE3   1977. 
1P.  J. Roaohe,   "Computational Fluid Dynamics", page 18,  2nd Edition, 
Hermosa Publishers, Albuquerque,  NM,   1976. 



Bxcept for Section VI the contents of this report represent a simpli- 
fied version of Chapter 1 of the author's doctoral dissertation1.  Some 
of the results obtained therein have been re-presented here in report 
form mainly to provide a conveniently available reference for subsequent 
work. 

The following notational conventions will be used in this report 

f* (z)   = f C-z) 

f* Cx,t)  = f C-x,t) 

f (z)   =    ^    f  (z) 

f^(z)  = ^ f (z) 
dz 

Dn  f(x,t) = b—    f  (x,t) 
9x 

U f(x,t) = -i-  f (x,t) 
u        8t 

[a]  = greatest integer <^ a 

R   a (-co, oo) = aii real numbers. 

Because the gamma function will be frequently encountered in the 
discussion it is convenient to use the more simplified notation of the 
factorial function. This is defined by 

■/ 
^a -t ,^ t e  dt 

for a >-l and by 

a+1 

for a <-l, a ^ -2, -3,  This relates to the usual gamma function by 

al  =   r (a+1) 

The reciprocal of the gamma function is known to be entire with zeros at 
0, -1, -2, ...; thus the function l/al is well defined and finite for 
all aeR with 

al = 0 (1-2) 



for a = -1, -2, ... . Using factorial notation the well known duplica- 
tion formula for the gamma function3.becomes 

2a 

C(a-1)/2)I  Ca/2)J (1.3) 

II.  THE FUNCTIONS H 

For any YeR define the "canonical" jump functions 

and 

for y = -1 define 

h (x) = 

h*Cx) 

0 

XVY! 

\ C-x); 

x>0 (2.1) 

H  (z)  =  (4Tr)"1/2 exp (-z2/4) 

and for Y> -1 let 

K  (z) A (s) H . (s-z) ds 
R 

where R = (-°°, «=); in particular note that 

H0 (z)  =  (4 TT)"1/2 j  exp (-(s-z)2/4) 

(2.2) 

(2.3) 

(2.4) 

= j erfc (-z/2). 

More generally, comparing with equation (7.2.3) of3' page 299, 

n H, (z)  =  (40"1/2 /s^ exp (-(s-z)2/4) ds 
o mi 

0n-l .n  _  .  . . 
=2   i erfc (-z/2) 

(2.5) 

%. Abramowitz and I. A.  Stegun, editors,   "Handbook of Mathematical 
Functions with Formulas,   Graphs and Mathematical Tables", p 256,  National 
Bureau of Standards Applied Mathematics Series US, Second Edition,  1964. 



Where in erfc denotes the n-  th integral of the complementary error 
function. For y < ~1 we  define H by 

H
Y &    =   Vn Cz) C2-6) 

wnere the superscript denotes differentiation n times and n = [-y] " 
integer part of -y. In order that this definition for y < -1 be meaning- 
ful it is,necessary that H be differentiable for -1 <_ y < 0.    This 
is a consequence of the following proposition. 

Proposition 1; The functions H are entire functions for all y e R and 

H   = H (2.7) 
y    y-n 

for any non-negative integer n, 

Proof: The funct: 

related functions 

Proof: The function H  is clearly entire.  For y > -1 consider the 

§Y (z) ■ (401/2 yl exp [z2/4] H^ (z) 

■fi 
i  exp [ - (s - 2sz)/4] ds 

o 
These functions are clearly positive and have n - th derivatives given by 

oo 

gCn)[z]  =    2-n   /   Y+n    exp  f .  (s2 . 2sz)/4] ds 

Y o 

:=     2"n g fzl 5 y+n  ^J 

> 0. 

Thus gY(z) is absolutely monotonic on the real line.  Such functions 
are necessarily analytic4. We may conclude that 

HY (z)  -  (4Trr1/2 exp (-z2/4) g^z) 

is entire for y > -1 also. To show that (2.7) holds for n=l and y > 0 
we may differentiate (2.3) to obtain 

H- (z)  = H  (z) 
y ^     y.i 

^D.   V.   Widder^   "Tne Laplace Transform"3 page 148}  Princeton University 
Press,  Princeton,  NJ    1941. 

8 



But from (2.2) and 2.4) we see that this must hold for y = 0  also and 
can be extended to all 7 using definition (2.6). For n >^ 2 equation 
(2.7) then follows by simple induction. This concludes the proof. 

The present version of the argument showing that H is entire is 
due to Mr, W. 0. Egerland of the Ballistics Research Laboratory5. 

A useful recursive formula can now be obtained. For y > 0 we may 
differentiate (2.3) under the integral sign and obtain 

Vi O) =  tr (z) 

kf (s - z) hY (s) H^ (s - z) ds 

R 

= -^/Vi (s) H-i (s-z) . ds 
R 

- | /hY(s) H.j (s-z) ds 

R 

= il±a H+1 (z) -fH  (z) 

By shifting the index and rearranging terms the last equation can also 
be written in either of the forms 

Y HY  (z) =  z H^ (z) + 2 HY_2 (z) (2.8a) 

H (Z)  = "^Vz 00 - f EY+1 Cz).      (2-8b) 

By differentiating these formulas it is easy to extend their validity 
to all choices of y. 

Let us now derive a power series expansion for E (z).  First 

note that for y >  -1» using standard tables of definite integrals6 

we have 

SW.  0.  Egertand,  Private Communication,   US Army Battistio Research Labora- 
tory , Aberdeen Proving Grounds3  MD3   1977. 
5   3  Handbook of Mathematical Tables}  Supplement to Handbook of Chemis- 
try and Physics,   page 324,  Second Edition,  The Chemical Rubber Company, 
Cleveland,  OH,   1964. 



CO 

H    (0)    =   ^Tr)-1/2/^ llexp  (-s2/4)  ds 
o 

2Y  C4Tr)"1/2    /    CY-l)/2 ,    ,   , =  ^—^  J  T
K
      

J      exp  (-r)  dr 

Y! o 

Y   rA .-1/2 
= ^V11-1     ((Y-l)/2)i (2.9) 

Y« 

But then from the duplication formula  (1.3) 

H
Y 

(0)     =     2WT)T ^'^ 

This can be shown to be valid for y < -I  also,through the use of recursion 
formula (2.8).  It follows that 

CO 

H    (z)   =    L H  (n)(0)   zn / nl 
Y n=o    Y 

oo 

=   V   H (0)   z11/ n! 
Z-*     Y-n n=o    ' 

00 n 
1 y  *  (2.11) 
2 ^   ((Y-n)/2):  nl 
n=o 

which converges for all z since H is entire. 

A different expansion for H (z) is useful for z < 0 since it turns out 

that H (z) vanishes exponentially as z ->■ - oo.  Recall from the proof of 
Proposition 1 that for y >  -1 

"Y C=0 ■ H_1 (z) gY (z) hi 

Because the function g (z) is entire it may be expressed as a power 
series. Thus 

Sy O) =E  gy^C0) ^ / n! 

n=o 

10 



= E 2"n gY+n   (0)   zn / nl 
n=o 

=   t4*rV2Z   2-n  (Y+n)l    H ^     (0)   zn /nl 
n=o Y+n 

which,   for   (2.9), 

„ 2Y£CCY*n-l)/2)i    zn 

n: n=o 

consequently 
oo 

HY Cz:) " H-l Cz)e    YI nl   Z C2-12) n=o 

Using induction this formula can be extended to all y except y = -1, 
-2, -3, ... where the expression for the coefficients becomes indeter- 
minate and requires special interpretation. We shall obtain an alterna- 
tive formula for these cases presently (equation (2.20) below). 

To simplify the evaluation of the functions H      note that once H (z) 
and H i (z) have been determined for some y then the recursive    ^ 

formula (2.8) can be used to evaluate H   (z) for any integer n.  In 

particular we can write 

Vn (Z) = PY,n ^  HY &   +  ^,n &  Hy-1   ^     ^'^ 

where p   (z) and q   (z) are polynomials-of degree fn+ll and In|-1 
Y > n Y 5 ri '■ 

respectively which satisfy the following recursion formulas 

PY,o &   =  1 ^,0 &   =  0 

PY,-1 (Z) = 0        \,-l &   =  1 

(Y+n) PY,n^z) = Z PY,n-l &   + 2 PY.n-2 & ^.U) 

(Y+n) qY,n ^   = Z\,n-l   &   ^ 2 q^^ (z)     (2.15) 

These may be verified without difficulty using induction and we will not 
include the details here. The first few polynomials are 

11 



PT,.4  Cx) 
1         2        i 

= t Y  z    + J Y   CY-2) V-4 « 

P..-3 & ■-ir. \,-3 t^ 
pr,-2 W ■^   , V-2  'Z' 

PY.-1   (Z) ■  0 
"Y.-I tz) 

P
Y,0   (« =  1 

z 

S.o tz:) 

Y,l v"   Y+l 

13  1 ,0  ,, 
" 8 Z " 4 (:2Y"3) Z 

1  2  1,  ... 
4 z + 2 CY-1) 

1 
" 2 Z 

= 1 

qY,l (Z) 

(2.16) 

(Y+l) 

PY,2 ^J    (Y+l)(Y+2) qY,2 & 
2z. 

(Y+l)(Y+2) 

Y,3 
f,-j = z"5 ♦ 2 (2Y+3) z 
lZJ    (Y+l)(Y+2)(Y+3) 

(Z)  = 
2z + 4 (Y+2) 

',3 ^    (Y+l) (Y+2) (Y+ 

Of particular interest are the functions H (z) where n is an 
n 

integer. Choosing Y=0 in (2.13) yields. 

H^OO p   (z) H + q   (z) H , ro,n ^ J    o      no,n K J    -1 (2.17) 

where from (2.2) and (2.4) 

Ho - i-erfc (-z/2) 

and 

H  « (4T7)"
1/2

 exp (-z2/4) 

Thus from (2.16) 

H_4 (z)  =  (-1/2)3 (z3 - 6z) H^ 

H_3 (z)  =  (1-1/2)2 (z2 - 2) H^ 

H_2 (z)  =  (-1/2) z H^ 

12 



R, (z)  =  z H + 2 H (2.18) 

H2 (z)  = (z + 2) H + 2 z "J /2 
H3 & 

=    I (z3 + 6z) Ho + 2 (z2+4) H^ /3! 

H4 & (z4 + 12z2 + 12) Ho + 2 (z3 + lOz) Hj /4] 

The cases n= -1, -2 simplify since it can be shown using (2.14)that 

P   (z) = 0 (2.19) 

for n < -1 and thus from (2.17) 

H 
n (z) Vn M  H-l W (2.20) 

n= -1, -2. ... .  For Inl < 12 the polynomials p   and q   are listed '' ii—      *    ' o,n    o,n 
explicitly in the Appendix. 

The asymptotic behavior of H (z) as |z| ^ °° is completelyjdetermined 
for n= -1, -2, by the representation (2.20). The behavior of H (z) 

for y = -1» "2, ... is somewhat different, especially for z -> + °°. 
We conclude this section by stating without proof1 two propositions 
which characterize the asymptotic properties of H . 

Proposition 2: For any interger N >_ 0 and any y eR with Y= -1« "2' ••• 
there exists a constant K KT > 0 such that Y,N - 

Ln=o 

where R XT (z) is a remainder term satisfying 
Y,N 

(-z2)n + R M (z) 
i.  J YJ^ 

(2.21) 

R   (z)  < K IT  zj 1 Y.N ^ J ' -  Y.N ' ' 
■2(N+1) 

uniformly for z < 0 

13 



,1.. i 

Proposition 3: For any integer n ^ 0 , y e R and z0 > 0 there exists a 

constant K     > 0 such that 
7,n,z 

O      oo 

^r-^      Y-2n 
HvW    '2-.   71   ,-,-2nV. - Rv.n & ^^ n=o 

where R        (z)  is a remainder terra satisfying 
Y,n  "• ^ 

|R (2)I   < K Y-2n-2 1  Y,n  ^ ^ ' -   Y,n,zo   z 

uniformly for z >_z . 

Note that Proposition 3 reraains valid when Y = -1,-2,... although 
it is soraewhat degenerate in these cases since the summation term 
vanishes in view of Cl-2).  Proposition 2 can also be shown to hold 
when Y is a negative integer by properly interpreting the indeterminate 
expression 

(Y + 2n)I 
Y!. 

III. THE FUNCTIONS H* and v 
Y    n 

From the notation introduced in Section I we have 

for all Y e R.  From (2.7) and (2.8) it follows immediately that for 
any Y e R 

H* ^ (z) =  (-l)n H* _n (z) (3.2) 

YH* (Z)  = -z H* 1 (z) + 2 H* 2 (z) (3.3a) 

and 

14 



H* (z)  =  CCY+2)/2) H*   (Z) +£H*   (Z)        (3.3b) 
Y Y*2     2 Y+l 

From C2.2) it is clear that H  = H*1 and thus from (3.2) and (2.7) 
we have 

H* (z)  = (-l)n+1 Hn (z) (3.4) 

for n = -1,-2,-3,... 

The functions v are defined for integer values of n by 

7"(z)   ' / lr ff-i ^ *' C3.s) 
Comparing with (2.3) we obtain the identity 

vn (z)  = Hn (z) + (-l)n H* (z) (3.6) 

which, from (3.4), gives 

vn (z) = 0 (3.7) 

for n = -1,-2,-3,.,.; from (2.7) and (3.2) we see that 

Vn(k) (z) - Vk (z) (3.8) 

and from (2.8a) and (3.3a) we have 

n 7n (z) = z 7n_1 (z) + 2 Vn_2  (z)        (3.9) 

Evaluating the integral in (3.5) explicitly yields 

V0 (z)  = 1 (3.10) 

71 (z)  = z 

But then, comparing_(3.9) with (2.14) and (3.10) with (2.16) we see 
that the functions v coincide with the polynamials p 

n r '      ro,n 

vn (z)  = p0jn (z) (3.11) 

15 



for ^ny n. Moreover the recursion relation (3.9) can be used to verify 
the following representation for v 

[^]    n-2k
n 

Vn &    =2^ kl (n-2k)! (3-12) 
k=o 

n = 0, 1, 2, ... where [n/2] = greatest integer £ n/2. For n £ 12 
these are listed explicitly in the Appendix. Equation (3.10) can 
also be inverted to obtain 

[n/2] 

(z) 
  (3.13) 

k=o 

4 -_f\    C-l)k Vn-2k 
nl   f-i kl 

IV.  THE FUNCTIONS H 
Y 

In this section the relationship between the functions H discussed 
Y 

in Section II and the diffusion equation is made clear by introducing 
the functions H . These are defined for any y e R by 

HY (x,t)  = ^tY tl, (x/VT) (4.1) 

for t > 0, with 

H^ (x,0) = hY (x) (4.2) 

for t = 0.  Specifically for y = -I and y = 0 we h ave 

Hj (x,t)  =  (4Trt)"1/2 exp (-x2/4t) (4.3) 

Ho (x,t)  = i- erfc (-x/2\^) (4.4) 

For y > -1 these functions can also be given an integral representation 
using (2.3) 

H^ (x,t) =   J  \  (s) H^ (s-x,t) ds 

=  (4^t)"1/2 / J^- exp  [-(s-x)2/4t] ds  (4.5) 

o 

16 



The assignment of initial values h in (4.2) is not arbitrary but 

provides a continuous extension of H from t > 0 into t > G, except 

possibly at the point x = 0, t = 0. To see this note from (2.21) that 
for x < 0 

lim   H (x,t) = lim VtY H (x/yft) 
t+O     ' t-K)        Y 

= lim V"tY exp (-x2/4t) (-V4t/x)Y+1 I" V + 0 (t/x2)! 
t->o Lm!        /J 

= 0 

and from (2.22) for x > 0 

lim  H (x,t)  = liaV^ CVVt)Y  [i + 0(t/x
2)] 

t->o   Y        t-*o yl 

xY 

The functions H can be shown to be continuous at (0,0) if and 
only if Y>0 and bounded if and only if y >_ 0.    When y is a negative 
integer the initial values (4.2) are seen to vanish because of (1.2). 
This does not fully convey the limiting behavior of H as t^o since 
this can be properly expressed only in terms of distributions or 
generalized functions. A more accurate formulation would be 

H_n (x,o)  = 5Cn"13 (x) 

for n = 1,2,3, ... where &   (x) is the usual Dirac delta function and 

6   indicates its k-th generalized derivative. Since these concepts 
will not be required in our analysis we shall not discuss them further. 

Evaluation of H for the important cases where y  is an integer can 
be accomplished using (2.17) from which we have 

Hn (x,t)  = yftn    P0jn(x/V^) Ho(x,t) *>/*%,„ O^Vt) H_1(x,t)|c4.6) 

where the polynomials p   and q   are given in the Appendix.  In 

particular the first few of these are 

H_5 = [(x4- 12x2 t + 12t2) / (-2t)4] H 

H-4 [(x3 - 6xt) / (-2t)3j H^ 

17 



H 

H 

H 

H 

[(x2 -2t) / C-2t)2] H^ 

-(x/2t) H^ 

x H + 2t H -1 

(x2 + 2t) H + 2xt 
o 

(4.7) 

^J 12 

(x3 + 6xt) Ho + 2 (x2t + 4t2) H , 1 /3i 

r(x4 + 12x2t + 12t2) Ho + 2 (x3t + 10xt2) H_ 1 /4: 

The properties of the function H follow directly from those of 

the functions H , Setting x = 0 in (4.1) and using (2.10) we see 

\  (0,t) 
2(Y/2) \\l2  (t)>  t>0, (4.8) 

Differentiating (4.1) and recalling (2.7) and (2.8) yields the 
formulas 

and 

t y 

D H 
x y 

^ 

H 

= H 

Y-2 

Y-l 

D11 H  = H 
x Y     Y-n 

t > 0 

t > 0 

t > 0 

(4.9) 

(4.10) 

(4.11) 

It immediately follows that H is a solution to the diffusion equation 

[Dt " Dx] HY CX»t3  =  0 (4-12:i 

in the region t > 0. More generally for any a > 0 and any x the 

function H (x-x , at) satisfies the equation 

U - aU2 | H (x-x , at)  = 0 
L t    xj  y ^  o'  ^ 

for t > 0 and has the initial values 

H  (x-x ,0)  = h (x-x ) 
Y     o ^     Y    o 

From the recursion formulas (2.12) we obtain 

YHY ^HY_1 + 2tHY_2 

HY =  (l/2t) [(Y+2) HY+2 -XHY+1] 

(4.13) 

(4.14) 

(4.15a) 

(4.15b) 

18 



for any y e K, 

A number of bounds on the growth of the functions H have been 
. Y 

established in1 but for present purposes we need only the following: 
For any x < 0 and any T > 0 there exists a constant K •> o such that 

lRY(Xt)| <_    K exp (-x2/4t) (4.16) 

uniformly for all x < x and 0 < t < T. This can be verified by 

noting from (2.21) that as iC/f*'  °0 

H^ (x,t) ^    H^ ix/yjt) 

=   (4TT)"1/2>/t
Y C-2^/x)Y+1 exp (-x2/4t)ri+ 0(t/x

2)l 

and -x/yj t >_ -x /yjt    > 0 in the region of interest. 

V.  THE FUNCTIONS H* and v Y     n 

The functions H* are defined for y e R by 

H* Cx.t)  = H^ (-x,t),       t > 0 (5.1) 

From the properties of H we immediately have 

H*  (x,0)  = h* (x) (5.2) 

H* (0,t)  = i hY/2 (t)      t > 0 (5.3) 

Dt H;   = H;-2 t > 0 (5-4) 

Dx H;   = -H;-i t"0, (5-5) 

Dx H;   = ^nti;-n (5-6) 

[Dt  "  aDxJ   Hy   Cx"Xo'   at)     =  0     a>0JxER.t>0 (5.71 

YH;    =-XH;_i + 2t H*_2                 t > 0 (5.8a) 

H*      =     (l/2t) [ (Y+2)  H*+2 +xH*+11    t>0. (5.8b) 
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From (3.4) we have 

for n = -1, -2, 

H* 
n C-l)n+1 H (5.9) 

The functions v are defined for integer values of n by 

v^ (x,t) = >/tn vn (x/Vt) n 

for t > 0, with 

v (x,0)  = x/n.' 

(5.10) 

(5.11) 

for t = 0. Using (3.5), (3.6) and (3.12) we see that these may also 
be written in the forms 

f   n 
/n (x,t)  = 7 Jf »_! (x~s.t) ds 

,n 

and 

v (x,t)  = H (x^) + (-1) H* (x,t) 

^      n-2k  tk 

Vn W     =      £o      fHTIk). kf 

(5.12) 

(5.13) 

(5.14) 

For n >_ 0 these functions are thus identical (except for a factor nl) 
with the well known heat polynomials discussed in Ref 7 and 8; they are 
fundamentally important because they are the polynomial solutions of 
the diffusion equation 

D - D ' 
t   x 

v (x,t) = 0 (5.15) 

with the polynomial initial values (5.11). Evaluation along x = 0 
clearly yields 

tn/2 
vn (0,t)  = (n/2)I 

0 

if n = 0,2,4, ... 

if n = 1,3,5, ... . 

(5.16) 

For n < -1 note from (3.7) that 

7P. C. Rosenbloom and D. V. Widder, "Expansions in Terms of Heat 
Potynomials and Related Functions," Transactions of the American 
Mathematical Society3   92  (1959),  pp.   220-266. 
8D.   V.  Widder,   "The Heat Equation," Academic Press,  New York,   1975. 
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vn (x,t)  - 0 (5.17) 

identically, for all x and t. 

VI.  INITIAL-BOUNDARY VALUE PROBLEMS 

As indicated in the introduction we shall eventually use the functions 
H > H* and vn to develop asymptotic expansions, accurate for small 

times, for solutions to equations such as (1.1). This will be accom- 
plished in later reports. We are already in a position to do this for 
the diffusion equation itself, however, and shall now show how various 
boundary and initial conditions can be effectively handled. 

For illustrative purposes let us first consider two simple but 
important problems for the semi-infinite domain x >^ 0, t > 0 

l^t " aDx I U = 0        x, t > 0 

u (x,0)  = h  (x-x )   x > 0 (BVP)n Y    o 1 

U (0,t) =o        t > o 

and 

\Dt  ~  aDx] w = 0      x,t > 0 (BVP) 

w (x,0) =0      x > 0 

2 

w (0,t) = h  (t)  t > 0 

These problems have the exact solutions 

u (x,t)  = H^ (x-xo, at) - H* (x+xo, at)       (6.1) 

and 

w (x,t)  = 2a"Y H*^ (x,at) (6.2) 

respectively, as can be verified by noting (4.13) and (5.7) and by 
directly substituting (4.14), (5.2) and (5„3) into (6.1) and (6.2). 
We can also guarantee that these solutions are unique by imposing 
additional growth conditions on u and w but this is not crucial to 
our discussion. One important point to note regarding these functions 
is that they are defined not just for x ■> Q but for all x.  Thus, 
they can also be considered as solutions to the following Cauchy 
or pure initial value problems respectively: 
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I D, - aD 
t    x 

u = 0 

and 

u fx.O]  = h (x-x ) h* (x+x ) 
Y    o 

[Dt-aDx]W =0 

W (x,o)  = 2a"Y h*Y (x) 

(IVP) 

(IVP) 

This equivalence between initial-boundary value problems and Cauchy 
problems is a basic property of the diffusion equation; it can also be 
used for dealing with the more complicated problems involving a bounded 
domain 0 < x < Jl as we now intend to show. 

Consider the general initial-boundary value problem 

,2 U aD u = 0    0<t£T, 0<x<£ 

u (x,0)  = f(x)   0 < x < ^ 

(6.3) 

(6.4) 

u (0,t)  = (t)  0 < t < T (6.5) 

u (£3t)  - g1 (t)  0 < t < (6.6) 

It may be supposed that the functions f(x), g0Ct) and g1(t) arise from 

thermocouple measurements and do not have any specific "analytic" 
form. However, by using a combination of polynomials and jump functions 
h , they can usually be effectively approximated with relatively few 

terms.  For instance we may have the initial and boundary conditions 

n     r n 
ffco = X v1 + XIV hk (X"V + e(x) 

k=o j=o 
and 

go   (t)  = 0 = g1   (t) 

where e(x) is an error term combining the errors in measurement and the 
errors in representation which is bounded in the form 

|e 001 1 o < < i 

for some "small" number e > 0.  Using linearity the solution to 
problem (6.3) - (6.6) can0then be written in the form 
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u Cx,tO =^[ak uk (x.t) +^b.k w.k (x,t) 

j=0 k=o 

+ E (x,t) 

where u^ and w denote solutions to (6.3) which vanish along x = 0 

and x = I  and satisfy 

uk (x,0)  = xk Ox 

wjk (x'0) = hk (x-x.) 

respectively. The terra E is an error terra which will also satisfy the 
bound 

|E (x,t)|  < eo 

because of the ■raaximura principle for parabolic differential equations. 
Similar coraraents apply to problem (6.3) - (6.6) when f(x) vanishes and 

the boundary values go (t) or g1 (t) are non-zero. We are thus led 

to consider the following two special forras of problem (6.3) - (6.6) 

and 

D    - aD2l u = 0               0 
t          xj <t<T, o <x < a 

u  (x,0)     =    h     (x-x ) 
n  v      o' 0   < x,   x    < £ 

-          o -                   (BVP) 

u  (O.t)     =    0 0   < t  < T 

u o,t)   =   o 0   < t  < T 

D    -  aD2    w = 0 0   <t<T,  0<x<Jl 

w   (x^O)     =    0 0   <_ x <  £ 

w   (0,t)     =    h^   (t) 0   <  t  <  T                          (BVP) 

w (£, t) =  0 0 < t £ T 

In (BVP) we require that n is a non-negative interger; in (BVP)  v 

can be any non-negative real number. A solution to these problems can 
be obtained by defining an extension of the initial values to the entire 
real line in such a way that the solution of the resulting Cauchy 
problem must also satisfy the correct boundary conditions along x = 0 
and x = Jl 

For problem (BVP)  consider the following periodic extension of the 

given initial values: 
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h (x - 2U - x ■),  2kA < x < C2k + 1) i 

£ (x) = 

-h h (x - (2k + 2)Ji + x^ , (2k+l) ^ 1 x <  (2k + 2), 

where k = 0, ±1, ±2, ... . This function repeats with a period 2Si  and 
is antisymmetric about any of the points x = kl,  where k = 0, ±1, ±2, 
.... A single cycle of f is indicated in Figure 1 over the interval 
[0, 21].    Since f is antisymmetric about x = 0 and x = H in particular 
then the solution of the Cauchy problem 

D-D t   x 
u 

u(x, 0) = f (x) 
(IVP) 

will also be antisymmetric about x = 0 and x = £ and must therefore 
be a solution to (BVP)  as well.  To obtain the solution to (IVP)  in 

a useful form note first, that in the interval [0, 21]  the function f 
can also be written as the sum of jump functions in the form 

n 

f (x) - hn (x-xo) ^ fk h 

k=o 

.n 
,. (x-£) + (-1) hn (x-2^ + xo)   (6.7) 

o <_ x <_ 2 £, where f, denotes the jump in the k-th derivative values 

of f at x = £, namely 
(Jl - x ) 

L *■    QJ 
n-k 

£k = -t1 + c-m (n.. k). (6.8) 

By adding on all other jumps occuring to the right and left of   [0,2)1] 
in proper sequence we obtain 

f  (x) ^jhn     (x-2j.-xo)   +^fkhk  ((x-(2j + l) 

j=o k=o 

+   (-l)n hn  (x-   (2j   +2)£ + xo)l 

°° n 

"X/ I hn   iX+2il + Xo)+Xr   fk hk  CX+   (2:i  +1)i) 

£) 

(6.9) 

+   (-1)" h*   (x +   (2j   +  2) * - v] 
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n! 

■I h- 
2i-x0       2J 

-►x 

f(x)=- 
|x-2^tx0|n 

n! 

Figure 1. Graph of f(x) in the interval [0,2a] 
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j=o k=o 

+ (-l)n H  (x-(2j+2)£+x^ 

n 

j=o k=o 

+ (-l)n Hn 

The solution to CIVP)3 can thus be written (formally at least) 

uCx,t) =^[Hn (x-2j£-xo,at) 
+J]fk Hk (x-(2j + l)£,at) 

c0,at)] 

TjH* (x+2jJl+xo,at) 
+,y^fk

Hk (*+(2i + l)l>at>i 

j=o k=o 

+ (-l)n H* Cx+(2j+2)^-xoJat) (6.10) 

We denote the truncation of this to N terms by u 

N n 

^(X,t3   =2J Hn   Cx-2j£-xo,at)   + J] f
k Hk   (x-(2j+l)£,at) 

C0.at)J 

"S|Hn  (x+2.^+Vat)  +2 fk Hk  (x+(2j + l)^at)| 
j=o k=o 

+   (-l)n H*   (x+(2j + 2)Jl-x  ,at) (6.11) 

The accuracy of u as an approximation for u in the domain [0,£] x 
[0,T] can be estimated by comparing the values of u, along x=0J t=0 

and x=SL  with the prescribed values for u. We have 

0 x=0 

uM(x,t) = {   hn (x-xo) n t=0 

H* ((2N+l)^xo,at) 
+^f

kH* ((2N+2)£,at) 

k=o  ■ 
+ (-l)n H* ((2N+3)Jl-x ,at), x=i 

It is clear that u satisfies the boundary and initial data exactly 

along x=0 and t=0 but does not vanish identically along x=£, as 
required. However using (4.16) the truncated series can be bounded 
along x=£ in the form 

lunC^t)| < const, exp [-(x^ZN+l) £) 2/4at 1 . 
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Since u and u^ are both solutions of (6.3) then the maximum principle 
for parabolic differential equations9 states that their maximum difference 
occurs on the boundary.  Thus the solution u of (BVP)  can be expressed 
in the form ^ 

u(x,t) = i^Cx.t) + 1^ (x,t) (6.12) 

where R is a remainder term satisfying 

|l^(x,t)| < const. expr-(xo+(2N+l)Jl)
2/4atJ 

uniformly in [o,l]  x [o,T]. The approximation u. for u is therefore 
particularly accurate for small values of t.  In fact for many 
applications it is sufficient to use only the lowest order approximation 
uo (x,t). 

A similar analysis applys to problem (BVP)  which has the equivalent 
initial value problem 4 

FD^ - aU2l w 
t 

w(x,0) 

0 

= 2a 

oo 

j=0 

h*Y (x+2jil) h2Y(x-(2j+2). ■] (IVP) 

with the formal solution 

w(x,t) = 2a -Y 

j=o 
H*Y (x+2jA,at) - H^ (x-(2j + 2)Jl,at) (6.13) 

In this form it is apparent that w(x,t) is antisymmetric and thus 
vanishes across x=A. On the other hand, by rearranging the terms into 
the equivalent form 

w(x,t) = 2a" H*Y(xJat) 

+ 2a -Y E ^at) (6.14) E* (x+2jJl,at) - H  (x-2j 
-pi L ZY W 

it becomes clear that w(x,t) satisfies the prescribed boundary condition 
along x=0.  Denoting the truncated series by 

wN(x,t) = 2a"Y^H*Y(X+2j£,at) - H2Y(X-(2J+2) il,at) 

we can show as in the previous case that 

w(x,t) = WN(x,t) + ^(x.t) 

94- N/  TikhonoV and A. A.  Samarskii,   "Equations of Mathematical 
Physios", Page 206J Pergamon Press,, Ino.3 MacMillan Company, 
Hew York,   1963. 

(6.15) 

(6.16) 
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where   _ C       ?   T 
|R (x,t)l <_ const exp l-(^+2)£) /4at 

uniformly in [0,1]  x [0,T]. 

To conclude this section let us briefly touch on two problems where 
the function derivative (flux) values are specified at the boundary. 
Consider 

[ 

and 

Dt 
-aD2 

X 
u = 0 

u(x,o)   = = h  (x-x ) 

"xC0,t) = 0 

\v»t) = 0 

Dt 
-  aD2    w = 0 

X 

w(x,o) = 0 

wx(0,t) = h   (t) 

Wx(A,t) = 0 

(BVP)5 

(BVP]6 

By derivations similar to that for (BVP)  and (BVP)., only using 

symmetry in place of antisymmetry, we can arrive at the following 
solutions 

n 

u(x,t)   - 2jHnCx-2j*-xo,at)   -^ f
k tikU-(2j + lH,at) C6.17) 

j=oL k=o 
-(-l)n Hn(x-(2j+2)J!,+xo,at)| 

+ 

00     r ■J 

2J|Hn (x+2jil+xo,at)  - 2^ fk H*k Cx+C2j+l)A,at) 

l-x  ,at) 0   J 
j=o •- k=o 

-C-l)n H*   (x+(2j + 2)£- 

and oo 

w(x,t)   =    2a"Y2^     H*Y+1   (x+2j£,at)   * ti2y+l   (x-(2j+2)£,at)     (6.18) 

for (BVP)  and (BVP), respectively, '5 
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We should mention that the conversion of initial-boundary value 
problem to equivalent Cauchy problems works only for the diffusion 
equation and not for more complicated parabolic equations without 
special modification. Nevertheless in these cases we can use the 
Diffusion Equation Solution Sequence method, alluded to above, to 
obtain approximations which are comparable with the first term of the 
expansions just derived. This technique has been discussed in detail 
for Dirichlet type of boundary conditions (function values specified) 
and in a later report will be applied to Robin's type or connective heat 
transfer boundary conditions, such as occur in gun barrels. 

VII. CONCLUSION 

The function H , H* and v have been defined and their properties 

investigated.  In particular they have been shown to be solutions of 
the diffusion equation with the special initial values 

HY (x,0)  = hY (x) 

H* (x,0)  = h* (x) 

n 

where 

v^ (x,0) = xn/n! 

x<p 

x>0 

and h* (x)  =  hY(-x) 

The functions H and H* were then used to develop the series 

expansions (6.10), (6.13), (6.17) and (6.18) for the solutions of 
initial-boundary value problems (BVP)  - (BVP) . 
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APPENDIX THE POLYNOMIALS p   AND q 
o,n    no,n 

n P. n W   =  V. W o.n 

<o 

0 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

o 

1 

x3+6x)/3; 

x4+12x2+12)/4; 

x5+20x3+60x)/5] 

x6+30x4+180x2+120)/6J 

x7+42x5+420x3+3360x2+840x)/7: 

x8+56x6+840x4+3360x2+I680)/8I 

x9+72x7+1512x5+10,080x3+15,120x)/9i 

x10+90x8+2520x6+25,200x4+75,600x2+30,240)/10i 

x +110x9+3960x7+55,440x5+277,200x3+332,640x)/ll' 

x12+132x10+5940x8+110,880x6+831,600x4+I,995,840x2+665,280)/12' 

In general 

p^  (x)  = V (x) 
[n/2] 

k=o 

n-2k 

(n-2k):k: 

n = -1,-2, 

n = 0,1,2, 
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n q   (x) 
 o,n ; '  

0 0 

1 2 

2 x 

3 2(x2+4)/31 

4 2(x3+10x)/4., 

5 2Cx4+18x2+32)/5I 

6 2Cx5+28x3+132x)/6J 

7 2(x6+40x4+348x2+384)/7 

8 2Cx7+54x5+740x3+2232x)/8I 

9. 2(x8+70x6+1380x4+7800x2+5568)/9., 

10 2(x9+88x7+2352x5+21,120x3+45,744x)/10., 

11 2(x10+108x8+3752x6+48,720x4+201,744x2+lll,360) /llI 

12 2(x11+130x9+5688x7+100,464x5+666,384x3+l,117,728x)/12., 

In general 

[(n-l)/2] 

Vn00 " C2/n!)   ^ 

where for n=l,2,3J,.. 

n-l-2k a ,  x 
nk 

k=o 

a i nk 

1 for k=o 

an-l,k + 2^-1^ an-2,k-l for k=1'2' •'• [C^l)/2] 
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n              q (x)  o,n  v i 

-1 1 

-2 -x/2 

-3 (x2-2)/(-2)2 

-4 (x3-6x)/(-2)3 

-5 (x4-12x2+12)/(-2)4 

-6 (x5-20x3+60x)/(-2)5 

-7 Cx6-30x4+180x2-120)/(-2)6 

-8 Cx7-42x5+420x3-840x)/(-2)7 

-9 Cx8-56x6+840x4-3360x2+1680)/(-2)8 

-10 Cx9-72x7+1512x5-10,080x3+15,120x)/(-2)9 

-11 Cx10-90x8+2520x6-25,200x4+75,600x2-30,240)/(-2)10 

-12 (x11-110x9+3960x7-55,440x5+277,200x3-332,640x)/(-2)11 

In general 

[(n-l)/2] 

k=o 

-D   Cn-l)l x 
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